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Abstract. Infinite time Turing machines extend the classical Turing machine
concept to transfinite ordinal time, thereby providing a natural model of infini-
tary computability that sheds light on the power and limitations of supertask al-
gorithms.

1 Supertasks

What would you compute with an infinitely fast computer? Whatcould
you compute? To make sense of these questions, one would wantto un-
derstand the algorithms that the machines would carry out, computational
tasks involving infinitely many steps of computation. Such tasks, known
assupertasks, have been studied since antiquity from a variety of view-
points.

Zeno of Elea (ca. 450 B.C.) was perhaps the first to grapple with
supertasks, in his famous paradox that it is impossible to gofrom here
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2 Joel David Hamkins

to there, because before doing so one must first get halfway there, and
before that halfway to the halfway point, and so on,ad infinitum. Zeno
takes the impossibility of completing a supertask as the foundation of his
reductio. More recently, twentieth century philosophers (see [Tho54])
have introduced Thomson’s lamp, which is on for 1/2 minute, off for 1/4
minute, on for 1/8 minute, and so on. After one minute, is it onor off?

In a more intriguing example, let’s suppose that you have infinitely
many one dollar bills (numbered1, 3, 5, · · · ) and in some nefarious un-
derground bar, the Devil explains to you that he has an attachment to your
particular bills, and is willing to pay you two dollars for each of your one
dollar bills. To carry out the exchange, he proposes an infinite series of
transactions, in each of which he will hand over to you two dollars and
take from you one dollar. The first transaction will take 1/2 hour, the sec-
ond 1/4 hour, the third 1/8 hour, and so on, so that after one hour the
entire exchange is complete. Should you accept his proposal? Perhaps
you will become richer? At the very least, you think, it will do no harm,
and so the contract is signed and the procedure begins.

It appears initially that you have made a good bargain, because at
every step of the transaction, you receive two dollars but give up only one.
The Devil is particular, however, about the order in which the bills are
exchanged: he always buys from you your lowest-numbered bill, paying
you with higher-numbered bills. (So on the first transactionhe accepts
from you bill number 1, and pays you with bills numbered 2 and 4, and
on the second transaction he buys from you bill number 2, which he had
just paid you, and pays you bills numbered 6 and 8, and so on.) When
the transaction is complete, you discover that you have no money left
at all! The reason is that at thenth exchange, the Devil took from you
bill numbern, and never subsequently returned it to you. Thus, the final
destination of every individual bill is under the ownershipof that shrewd
banker, the Devil.

The point is that you should have paid more attention to the details of
the supertask transaction that you had agreed to undertake.And similarly,
when we design supertask algorithms to solve mathematical questions,
we must take care not to make inadvertent assumptions about what may
be true only for finite algorithms.

Supertasks have also been studied by the physicists (see [Ear95]). Us-
ing only the Newtonian gravity law (and neglecting relativity), it is pos-
sible to arrange finitely many stars in orbiting pairs, each pair orbiting
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the common center of mass of all the pairs, and a single tiny moon racing
faster around, squeezing just so between the dual stars so asto pick up
speed with every such transaction. Assuming point masses (or collaps-
ing stars to avoid collision), the arrangement leads by Newton’s law of
gravitation to infinite acceleration in finite time. Other supertasks reveal
apparent violations of the conservation of energy in Newtonian physics:
infinitely many billiard balls, of successively diminishing size converg-
ing to a point, are initially at rest, but then the first is set rolling, and
each ball transfers in turn all the energy to the next; after afinite amount
of time, all motion has ceased, though every interaction is energy con-
serving. Still other arrangements have the balls spaced outfurther and
further out to infinity, and the interesting thing about bothof these ex-
amples is that time-symmetry allows them to run in reverse, with static
configurations of balls suddenly coming into motion withoutviolating
conservation of energy in any interaction.

More computationally significant supertasks have been proposed by
physicists in the context of relativity theory ([EN93], [Hog92], [Hog94]).
Suppose that you want to know the answer to some number theoretic con-
jecture, such as whether there are additional Fermat primes(primes of the
form 22

n

+ 1), a conjecture that can be confirmed with a single numer-
ical example. The way to solve the problem is to board a rocket, while
setting your graduate students to work on earth looking for an example.
While you fly faster and faster around the earth, your graduate students,
and their graduate students and so on, continue the exhaustive search,
with the agreement that if they ever find an example, they willsend a ra-
dio signal up to the rocket. The point is that meanwhile, by accelerating
sufficiently fast towards the speed of light, it is possible to arrange that
because of relativistic time contraction, what is a finite amount of time
on the rocket corresponds to an infinite amount of time on the earth. The
general observation is that by means of such communication between
two reference frames, what corresponds to an infinite searchcan be com-
pleted in a finite amount of time.

Even more complicated arrangements, with rockets flying around
rockets, can be arranged to solve more complicated number theoretic
questions. And more complicated relativistic spacetimes can be (mathe-
matically) constructed to avoid the unpleasantness of infinite acceleration
required in the rocket examples above (see [Pit90]).
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These computational examples speak to Church’s thesis, thewidely
accepted philosophical principle that the classical theory of computabil-
ity has correctly captured the notion of what it means to be computable.
Because the relativistic rocket examples provide algorithms for comput-
ing functions, such as the halting problem, that are not computable by
Turing machines, one can view them as refuting Church’s thesis. Sup-
porters of this view emphasize that when thinking about whatis in prin-
ciple computable, we must attend to the computational poweravailable to
us as a consequence of the fact that we live in a relativistic or quantum-
mechanical universe. To ignore this power is to pretend thatwe live in
a Newtonian world. Another simpler argument against Church’s thesis
consists of the observation that a particle undergoing Brownian motion
can be used to generate a random bit stream that we have no reason to
think is recursive. Therefore, proponents argue, we have noreason to
believe Church’s thesis.

Apart from the question of what one can actually compute in this
world, whether Newtonian or relativistic or quantum-mechanical, math-
ematicians are interested in whatin principle a supertask can accom-
plish. Buchi [Buc62] and others initiated the study ofω-automata and
Buchi machines, involving automata and Turing machine computations
of lengthω which accept or reject infinite input. Moving to a higher level
in the hierarchy, Gerald Sacks and many others (see [Sac90])founded the
field of higher recursion theory, includingα-recursion andE-recursion,
a huge body of work analyzing computation on infinite objects. Blum,
Shub and Smale [BSS89] have presented a model of computationon the
real numbers, a kind of flowchart machine where the basic units of com-
putation consist of real numbers, in full glorious precision. Apart from
this previous mathematical work, I would like to propose here a new
model of infinitary computability: infinite time Turing machines. This
model offers the strong computational power of higher recursion theory
while remaining very close in spirit to the computability concept of ordi-
nary Turing machines.
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2 Infinite time Turing machines

I propose to extend the Turing machine concept to transfiniteordinal
time, thereby providing a natural model for infinitary computability.1 The
idea is to allow somehow a Turing machine to compute for infinitely
many steps, while preserving the information produced up tothat point.

So let me explain specifically how the machines work. The machine
hardware is identical to a classical Turing machine, with a head moving
back and forth reading and writing zeros and ones on a tape according to
the rigid instructions of a finite program, with finitely manystates. What
is new is the transfinite behavior of the machine, behavior providing a
natural theory of computation on the reals that directly generalizes the
classical finite theory to the transfinite. For convenience,the machines

input:

scratch:

output:

start

1

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

0

0

· · ·

· · ·

· · ·

Fig. 1. An infinite time Turing machine: the computation begins

have three tapes—one for the input, one for scratch work and one for
the output—and the computation begins with the input written out on
the input tape, with the head on the left-most cell in thestart state. The
successor steps of computation proceed in exactly the classical manner:
the head reads the contents of the cells on which it rests, reflects on its
state and follows the rigid instructions of the finite program it is running:
accordingly, it writes on the tape, moves the head one cell tothe left or
the right or not at all and switches to a new state. Thus, the classical
procedure determines the configuration of the machine at stageα + 1,
given the configuration at any stageα.

1 Infinite time Turing machines were originally defined by JeffKidder in 1990, and he and I
worked out the early theory together while we were graduate students at UC Berkeley. Later,
Andy Lewis and I solved some of the early questions, and presented a complete introduction
in [HL00], later solving Post’s problem for supertasks in [HL]. Benedikt Loewe [Low01],
Dan Seabold [HS01] and especially Philip Welch [Wel99], [Wel00], [Wel] have also made
important contributions.
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We extend the computation into transfinite ordinal time by simply
specifying the behavior of the machine at limit ordinals. When a clas-
sical Turing machine fails to halt, it is usually thought of as some sort
of failure; the result is discarded even though the machine might have
been writing some very interesting information on the tape (such as all
the theorems of mathematics, for example, or the members of some other
computably enumerable set). With infinite time Turing machines, how-
ever, we hope to preserve this information by taking some kind of limit
of the earlier configurations and continuing the computation transfinitely.
Specifically, at any limit ordinal stageλ, the head resets to the left-most
cell; the machine is placed in the speciallimit state, just another of the
finitely many states; and the values in the cells of the tape are updated by
computing thelim sup of the previous cell values. With the limit stage

input:

scratch:

output:

limit

1

0

1

1

1

1

0

1

0

1

0

1

0

0

1

0

1

1

· · ·

· · ·

· · ·

Fig. 2. The limit configuration

configuration thus completely specified, the machine simplycontinues
computing. If after some amount of time thehalt state is reached, the
machine gives as output whatever is written on the output tape.

Because there seems to be no need to limit ourselves to finite input
and output—the machines have plenty of time to consult the entire input
tape and to write on the entire output tape before halting—the natural
context for these machines is Cantor Space2ω, the space of infinite binary
sequences. For our purposes here, let’s denote this space byR and refer
to its members as real numbers, intending by this terminology to mean
infinite binary sequences. We regard the set of natural numbers N as a
subset ofR by identifying the number0 with the sequence〈 000 · · · 〉, the
number1 with 〈 100 · · · 〉, the number2 with 〈 110 · · · 〉, and so on.

Because every programp determines a function—the function send-
ing inputx to the output of the computation of programp on inputx—the
machines provide a model of computation on the reals. We define that a
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partial functionf ...R → R is infinite time computable(or supertask com-
putable, or for brevity, justcomputable, when the infinite time context is
understood) when there is a programp such thatf(x) = y if and only if
the computation of programp on inputx yields outputy. A set of reals
A ⊆ R is infinite time decidable(or supertask decidableor again, just
decidable) when its characteristic function, the function with value1 for
inputs inA and0 for inputs not inA, is computable. The setA is infi-
nite timesemi-decidablewhen the function of affirmative values1 ↾ A,
that is, the function with domainA and constant value1, is computable.
(Thus, the semi-decidable sets correspond in the classicaltheory to the
recursively enumerable sets, though since here we have setsof reals, we
hesitate to describe them as enumerable.) Since it is an easymatter to
change any output value to1, the semi-decidable sets are exactly the do-
mains of the computable functions, just as in the classical theory.

Theorem 1. Every supertask computation halts or repeats in countably
many steps.

Proof. Suppose that a supertask computation does not halt by any count-
able stage of computation. The point is now that a simple cofinality argu-
ment shows that the complete configuration of the machine at stageω1—
the position of the head, the state and the contents of the cells—must
have occurred earlier. For example, one can find a countable ordinalα0

by which time all of the cells that have stabilized byω1 have stabilized.
And then one can construct a countable increasing sequence of count-
able ordinalsα0 < α1 < · · · such that all the cells that change their
value afterαn do so at least once betweenαn andαn+1. These ordinals
exist becauseω1 is regular and there are only countably many cells. At
the limit stageαω = supαn, which is still a countable ordinal, I claim
that the configuration is the same as atω1: since it is a limit ordinal, the
head is on the first cell and in the limit state; and by construction the
contents of each cell are computing the samelim sup that they compute
at ω1. Since beyondα0 the only cells that change are the ones that will
change unboundedly often, it follows that limits of this configuration are
the very same configuration again, and the machine is caught in an end-
lessly repeating loop. So the proof is complete.

Please observe in this argument that, contrary to the classical situa-
tion, a computation that merely repeats a complete machine configuration
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need not be caught in an endlessly repeating loop. Afterω many repeti-
tions, the limit configuration may allow it to escape. One example of this
phenomenon would be the machine which does nothing at all except halt
when it is in thelimit state; this machine repeats its initial configuration
many times, yet still halts atω.

3 How powerful are the machines?

One naturally wants to understand the power of the new machines. The
first observation, of course, is that the classical halting problem for ordi-
nary Turing machines—the question of whether a given program p halts
on given inputn in finitely many steps—is decidable inω many steps
by an infinite time Turing machine. To see this, one programs an infinite
time Turing machine to simply simulate the operation ofp on n, and if
the simulated computation ever halts our algorithm gives the output that
yes, indeed, the computation did halt. Otherwise, thelimit state will be
attained, and when this occurs the machine will that know thesimulated
computation failed to halt; so it outputs the answer that no,the computa-
tion did not halt.

The power of infinite time Turing machines, though, far transcends
the classical halting problem. The truth is that any question of first or-
der number theory is supertask decidable. With an infinite time Turing
machine, one could solve the prime pairs conjecture (which asserts that
there are infinitely many primes pairs, pairs of primes differing by two),
for example, and the question of whether there are infinitelymany Fermat
primes (primes of the form22

n

+1) and so on: there is a general decision
algorithm for any such conjecture. The point is that to decide a question
of the form∃nϕ(n, x), wheren ranges over the natural numbers, one
can simply try out all the possible values ofn in turn. One either finds a
witnessn or else knows at the limit that there is no such witness, and in
this way decides whether∃nϕ(n, x). Iterating this idea, one concludes
by induction on the complexity of the statement that any firstorder num-
ber theoretic question is decidable with only a finite numberof limits,
that is, before stageω2. In fact, the class of sets that are decidable in time
uniformly beforeω2 is exactly the class of arithmetic sets, the sets of
reals that are definable by a statement using quantifiers overthe natural
numbers (see [HL00, Theorem 2.6 ]).
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Theorem 2. Arithmetic truth is infinite time decidable.

One can push this much harder to see that even more complex questions,
questions from the lower part of the projective hierarchy insecond order
number theory, are supertask decidable. The fact is that anyΠ1

1 set is de-
cidable and more. To prove this, it suffices to consider the most complex
Π1

1 set, the well-known setWO, consisting of the reals coding a well-
orders of a subset ofN. An infinite binary sequencex codes a relation⊳
onN wheni ⊳ j if and only if x(〈 i, j 〉) = 1, where〈 ·, · 〉 is the Gödel
pairing function coding pairs of natural numbers with natural numbers.

Theorem 3. The setWO is infinite time decidable.

Proof. This argument is known as the “count-through” argument. We
would like to describe a supertask algorithm which on inputx decides
whetherx codes a well order⊳ on a subset ofN or not. Inω many steps,
it is easy to check whetherx codes a linear order: this amounts merely
to checking that the relation⊳ coded byx is transitive, irreflexive and
connected. For example, the machine must check that whenever i ⊳ j

andj ⊳ k then alsoi ⊳ k, and all these requirements can be enumerated
and checked inω many steps.

Next, the algorithm will attempt to find the least element in the field
of the relation⊳. This can be done by keeping a current-best-guess on
the scratch tape and systematically looking for better guesses, whenever
a new smaller element is found. When such a better guess is found, it
replaces the current guess on the scratch tape, and a specialflag cell is
flashed on and then off again. At the limit, if the flag is on, it means that
infinitely often the guess was changed, and so the relation has an infinite
descending sequence. Thus, in this case the input is definitely not a well
order and the computation can halt with a negative output. Conversely,
if the flag is off, it means that the guess was only changed finitely often,
and the machine has successfully found the⊳ least element. The algo-
rithm now proceeds to erase all mention of this element from the field
of the relation⊳. This produces a new smaller relation, and the algo-
rithm proceeds to find the least element of it. In this way, therelation
⊳ is eventually erased from the bottom as the computation proceeds. If
the relation is not a well order, eventually the algorithm will erase the
well founded initial segment of it, and then discover that there is no least
element remaining, and reject the input. If the relation is awell order,
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then the algorithm will eventually erase the entire field, and recognize
that it has done so, and accept the input as a well order. This completes
the proof.

SinceWO is well-known as a completeΠ1
1 set, we conclude as a corol-

lary that everyΠ1
1 set is infinite time decidable and hence also, everyΣ1

1

set is infinite time decidable. But one can’t go much further in the projec-
tive hierarchy, because every semi-decidable set has complexity∆1

2. For
a finer stratification, let me mention that the arithmetic sets are exactly
the sets which can be decided by an algorithm using a bounded finite
number of limits, and the hyperarithmetic sets, the∆1

1 sets, are exactly
the sets which can be decided in some bounded recursive ordinal length
of time. Thus, the arithmetic sets are those that can be decided uniformly
in time beforeω2, and the hyperarithmetic sets are exactly those which
can be decided uniformly in time beforeωck

1 .
Much of the classical computability theory generalizes to the super-

task context of infinite time Turing machines. For example, the s-m-n
theorem and the Recursion Theorem go through with virtuallyidentical
proofs. But some other classical results, even very elementary ones, do
not generalize. One surprising result, for example, is the following.

Theorem 4. There is a non-computable function whose graph is semi-
decidable.

This follows from what I have called the Lost Melody Theorem [HL00,
Theorem 4.9], which asserts the existence of a realc such that{ c } is
decidable, butc is not writable. Imagine the realc as the melody that
you can recognize when someone sings it, but you cannot sing it on your
own. Using such a lost melody realc, one can prove Theorem 4 with
the functionf(x) = c. Indeed, since this function is constant and the
graph is decidable, the theorem can be strengthened to the assertion that
there is a non-computable constant function whose graph is decidable.
To give some idea of how one proves the Lost Melody Theorem, let me
mention that the realc will be the least real in the Gödel constructible
universeL hierarchy that codes the ordinal supremum of the places where
all computations on input0 have either halted or repeated. Since this
ordinal is above every writable ordinal, the realc cannot be writable. But
the realc codes enough information about itself so that an infinite time
Turing machine can verify that a given real isc or not.
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4 How long do the computations take?

One naturally wants to understand how long a supertask computation
can take. Therefore, I define an ordinalα to beclockableif there is a
computation on input0 that takes exactlyα many steps to complete (so
that theαth step of computation is the act of moving to the halt state).
Such a computation is a clock of sorts, a way to count exactly up toα.

It is very easy to see that any finiten is clockable; one can simply
have a machine cycle throughn states and then halt. The ordinalω is
clockable, by the machine that halts whenever it sees thelimit state. And
these same ideas show that ifα is clockable, then so isα+ n andα+ ω.
Thus, every ordinal up toω2 is clockable. The ordinalω2 itself is clock-
able: one can recognize it as the first limit of limit ordinals, by flashing a
flag on and then off again every time thelimit state is encountered. The
ordinalω2 will be first time this flag is on at a limit stage. Going beyond
this, it is easy to see that ifα andβ are clockable, so areα + β andαβ.
Undergraduate students might enjoy finding algorithms to clock specific
ordinals, such asωω2

, and I can recommend this as a way to help them
understand the ordinals more deeply.

Most readers will have guessed that the analysis extends much fur-
ther. In fact, any recursive ordinal is clockable. This can be seen by op-
timizing the count-through argument in Theorem 3. Specifically, after
writing a real coding a recursive ordinal on the tape inω many steps,
one proceeds to count through it in an optimized fashion. Rather than
merely guessing the least element of the relation, one guesses theω many
least elements of the relation (while simultaneously erasing the previous
guesses). In this way, each block ofω many steps of the algorithm will
eraseω many elements from the field of the relation.

Some have been surprised that the clockable ordinals extendbeyond
the recursive ordinals, but in fact they extend well beyond the recursive
ordinals. To see at least the beginnings of this, let me show that the or-
dinalωck

1 + ω is clockable, whereωck
1 is the supremum of the recursive

ordinals. Kleene has proved that there is a recursive relation whose well-
founded part has order typeωck

1 . Consider the supertask algorithm that
writes this relation on the tape and then attempts to count through it. By
stageωck

1 the ill-founded part will have been reached, but it takes theal-
gorithm an additionalω many steps to realize this. So it can halt at stage
ωck
1 + ω.
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One is left to wonder, isωck
1 itself clockable? More generally,Are

there gaps in the clockable ordinals?After all, if a child can count to
twenty-seven, then one might expect the child also to be ableto count
to any smaller number, such as nineteen.2 The question is whether we
expect the same to be true for infinite time Turing machines.

Theorem 5. Gaps exist in the clockable ordinals.

Proof. Consider the algorithm which simulates all programs on input 0,
recording which have halted. When a stage is found at which nopro-
grams halt, then halt. This produces a clockable ordinal above a non-
clockable ordinal, so gaps exist.

The argument can be modified to show that the next gap above any
clockable ordinal has sizeω. Other arguments establish that complicated
behavior can occur at limits of gaps, because the lengths of the gaps are
unbounded in the clockable ordinals.

Question 1. What is the structure of the clockable ordinals?

For example, one might wonder whether the first gap begins atωck
1 , the

supremum of the recursive ordinals? (It does, since no admissible ordinal
is clockable [HL00].)

There is another way for infinite time Turing machines to operate
as clocks, and this is by counting through a real coding a wellorder in
the manner of Theorem 3. To assist with this analysis, we define that a
real iswritable if it is the output of a supertask computation on input0.
An ordinal is writable if it is coded by a writable real. It is easy to see
that there are no gaps in the writable ordinals, because if one can write
down real codingα, it is an easy matter to write down from this a real
coding any particularβ < α. In [HL00], Andy Lewis and I proved that
the order types of the clockable and writable ordinals are the same, but
the question was left open as to whether these two classes of ordinals had
the same supremum. This was solved by Philip Welch in [Wel], allowing
Andy Lewis and I to greatly simplify arguments in [HL].

2 Friends with children have informed me that such an expectation is unwarranted; one some-
times can’t get the child to stop at the right time. This reminds me of a time when my younger
brother was in kindergarten, the children all sat in a big circle taking turns saying the next
letter of the alphabet: A, B, C, and so on, around the circle inthe manner of the usual song.
After the letter K, the next child contributed LMNOP, thinking that this was only one letter.
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Theorem 6. (Welch)Every clockable ordinal is writable. The supremum
of the writable and clockable ordinals is the same.

5 The supertask halting problems

Any notion of computation naturally provides a corresponding halting
problem, the question of whether a given computation will halt. In the
supertask context, we divide the halting problem into two parts, a bold-
face and a lightface problem:

H = { 〈 p, x 〉 | programp halts on inputx }

h = { p | programp halts on input0 }

In the classical theory, of course, these two sets are Turingequivalent,
but here the situation is different. Nevertheless, for undecidability the
classical arguments do directly generalize.

Theorem 7. The halting problemsh andH are semi-decidable but not
decidable.

For semi-decidability, the point is that given a programp and inputx
(or input0), one can simply simulatep on x to see if it halts. If it does,
output the answer that yes, it halted; otherwise, keep simulating. For un-
decidability, in the case ofH one can use the classical diagonalization
argument; for the lightface halting problemh, one appeals to the Recur-
sion Theorem, just as in the classical theory.

6 Oracles

There are two natural types of oracles to use in the infinite time Turing
machine context. On the one hand, one can use an individual real as an
oracle just as one does in the classical context, by simply adding an or-
acle tape containing this real, and allowing the machine to access this
tape during the computation. This corresponds exactly to adding an extra
input tape and thinking of the oracle real as a fixed additional input.

But this is ultimately not the right type of oracle to consider. Rather,
an oracle is more properly the same type of object as one that might
be decidable or semi-decidable, namely, asetof reals, not an individual
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real. Since such a set could be uncountable, we can’t expect to be able
to write out the entire contents of the oracle on an extra tape. Rather, we
provide an oracle model of relative computability by which the machine
can make arbitrary membership queries of the oracle. Specifically, for a
fixed oracle set of realsA, we equip an infinite time Turing machine with
an initially blank oracle tape on which the machine can read or write. By
attempting to switch to a specialquerystate, the machine receives the
answer (by moving actually to theyesor no state) as to whether the real
currently written on the oracle tape is inA or not. In this way, the ma-
chine is able to ask, of any realx that it is capable of producing, whether
x ∈ A or not. This model of oracle computation has proven robust, and
it closely follows the well-known definition ofL[A] in set theory, the
constructible universe relative to the predicateA, in which at any given
stage in the construction one is allowed to apply the predicate only to
previously constructed objects.

From the notion of oracle computation, one can of course define a
notion of relative computability. Specifically, the setA is computable
from B, writtenA ≤∞ B, if and only if A is supertask decidable using
oracleB. One then also definesA ≡∞ B if and only if A ≤∞ B and
B ≤∞ A, and this is the equivalence relation of the infinite time Turing
degrees. The strict versionA <∞ B holds if and only ifA ≤∞ B and
A 6≡∞ B.

7 Supertask Jump Operators

The two halting problems give rise of course to two jump operators.
Specifically, for any setA we have the boldface and lightface jumps:

AH = HA = { 〈 p, x 〉 | programp halts on inputx with oracleA }

A▽ = A⊕ hA = A⊕ { p | programp halts on input0 with oracleA }

We include the factorA explicitly in A▽, because in generalA may not
be computable fromhA. Indeed, there are some setsA that are not com-
putable from any real at all.

Jump Theorem 8 For any set,A <∞ A▽ <∞ AH.

To prove this theorem, one first observes thatA ≤∞ A▽ ≤∞ AH, since
A is explicitly computable fromA▽ andA▽ is merely the0th slice of
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AH. Secondly, one knows thatA <∞ A▽ because the undecidability of
the relativized halting problem means thathA is not computable from
A. The nontrivial aspect of this theorem is the assertion thatA▽ <∞

AH. This assertion is what separates the two jump operators, and is the
reason that we know the two halting problemsh ≡∞ 0▽ andH ≡∞ 0H

are not equivalent. This follows from the more specific result that the
setAH is not computable fromA ⊕ z for any realz. In particular,0H is
not computable from any real. In fact the boldface jumpH jumps much
higher than the lightface jump▽, and absorbs many iterates of the weaker
jump, sinceA▽H ≡∞ AH; indeed, for any ordinalα which isAH-writable,
A▽

(α)
H ≡∞ AH (see [HL00]).

8 Post’s Problem for Supertasks

Post’s problem is the question in classical computability theory of whether
there are any non-decidable semi-decidable degrees strictly below the
halting problem, or equivalently, whether there are any intermediate semi-
decidable degrees between0 and the Turing jump0′. This question has a
natural supertask analogue:

Supertask Post’s Problem 9Are there any intermediate semi-decidable
supertask degrees between0 and the supertask jump0▽?

The answer is delicately mixed. On the one hand, in the context of de-
grees in the real numbers, we have a negative answer. This contrasts
sharply with the classical theory.

Theorem 10. There are no realsz such that0 <∞ z <∞ 0▽.

Proof. Suppose that0 ≤∞ z ≤∞ 0▽. Soz is the output of programp us-
ing 0▽ as an oracle. Consider the algorithm which computes approxima-
tions to0▽, and uses programp with these approximations in an attempt
to producez. If one of the proper approximations to0▽ can successfully
producez, thenz is writable and0 ≡∞ z. Conversely, if none of the
proper approximations can producez, then on inputz we can recognize
0▽ as thetrue approximation, the first approximation able to producez.
Soz ≡∞ 0▽.

On the other hand, when it comes tosetsof reals, we have an affir-
mative answer.
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Theorem 11. There are semi-decidable sets of realsA with 0 <∞ A <∞

0▽. Indeed, there are incomparable semi-decidable setsA ⊥ B.

Please consult [HL00] for the proof. Let me mention here, though, that
the basic idea of the argument is to generalize the Friedburg-Munchnik
priority argument to the supertask context, much as Sacks’ did for α-
recursion theory. BuildingA andB in stages, we attempt to meet the
requirements

ϕB
p 6= A and ϕA

p 6= B

by adding writable reals toA andB that have not yet appeared on the
higher priority computations. One technical fact to make this idea work
is that for any clockable ordinalα, there are many writable reals not
appearing during the course of any supertask computation oflengthα.
Thus, we can find a supply of new writable reals to add toA andB in
order to satisfy the later requirements, without injuring the witnessing
computations of earlier higher-priority requirements.

9 Other Models of Infinitary Computation

Let me briefly compare the infinite time Turing machine model of super-
task computation with some other well-known models.

The Blum-Shub-Smale machines (see [BSS89]) were the original in-
spiration for infinite time Turing machines.3 Programs and computations
for BSS machines are finite, but the basic units of computation are full
precision real numbers. They are in essence finite state register machines,
where the registers each hold a real number. The primary purpose of in-
troducing the BSS machines was to provide a theoretical foundation for
analyzing computational algorithms using the concepts of real analysis
rather than arithmetic. The machines allow one to analyze the dynamical
features, for example, of actual algorithms in numerical analysis, such as
Newton’s method, and illuminate questions of stability andconvergence
for such algorithms. The classical approach to these problems, using the
Turing machine model with ever greater decimal approximations, forces
one into the realm of finite combinatorics, where one becomeslost in a

3 Jeff Kidder and I heard Lenore Blum’s lectures for the Berkeley Logic Colloquium in 1989,
and had the idea to generalize the Turing machine concept in adifferent direction: to infinite
time rather than infinite precision.
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jumble of discrete approximation error analysis, when one would rather
fly smoothly above it in the heaven of differential equations.

In another direction, the theory of higher recursion provides a model
of infinitary computability by setting a very general theoretical context
for recursion on infinite objects, and one should expect manyparallels
between it and the theory of infinite time Turing machines. The anony-
mous referee of [HL] and Philip Welch have pointed out, for example,
that the infinitary priority argument [HL, Theorem 4.1], stated as Theo-
rem 11 above, parallels Sacks’ version of the Friedburg-Munchnik proof
for α-recursion [Sac90], specifically whenα is λ, the supremum of the
clockable ordinals. One can identify the writable reals in our argument
with the ordinal stages at which they appear and get Sacks’ sets, and con-
versely, Sacks’ could have written out codes for those stages and gotten
our sets. This identification reveals that the≤∞-degree structure of sets
of writable reals below0▽ is exactly that of theλ-degrees. Accordingly,
one can obtain not only the answer to Post’s problem, but all the theorems
from λ-recursion theory for this class of degrees, such as the Shore Den-
sity Theorem, etc., for free. It will be very interesting to see if these ideas
will allow one to prove the theorems in the general case of alldegrees.

Lastly, let me mention quantum Turing machines, if only because I
am often asked about them in connection with infinite time Turing ma-
chines. Quantum Turing machines are like classical Turing machines,
except that the configuration of the machine at any given stage is a su-
perposition of classical configurations; the different components of these
superpositions, like the wave functions of quantum mechanics, may con-
structively or destructively interfere with one another asthe computation
proceeds. By means of clever quantum algorithms, one can effectively
carry out parallel computation in these different components, construc-
tively interfering their output to assemble the information into a final
answer. In this way, quantum Turing machines allow for an exponential
increase in the speed of computation of many important functions. But
because quantum Turing machines, at the end of the day, are simulable
by classical Turing machines, they do not introduce new decidable sets or
new computable functions. And so while quantum Turing machines are
without a doubt extremely important in matters of computational feasi-
bility, they do not really provide a model of infinitary computability. Infi-
nite time Turing machines are simply much more powerful thanquantum
Turing machines.
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10 Questions for the Future

I close this article by asking the open-ended question:

Question 2. What is the structure of infinite time Turing degrees? To
what extent do its properties mirror or differ from the classical structure?

This question really stands for the dozens of specific open questions that
one might ask: does the Sacks Density Theorem, for example, hold in the
supertask context for arbitrary sets of reals? The field is wide open.
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